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Target product profiles

Model specification: Inheritance models Mosquito ecology models
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Target product profiles for population replacement

Fitness cost (sne)
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TP13 population replacement construct
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Fitness-related parameters

Genotypes: WW,
Genotypes: HH, HB
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Malaria transmission probability

infection probability
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Environmental risk assessment

Pathway 7 Biodiversity: Upon population suppression of Anopheles gambiae via gene drive, its niche could be occupied by
competitor species that could cause suppression of a valued species to affect ecosystem services.

Pathway 30 Human health: Potential increases in disease levels beyond those pre-gene drive intervention following a
resurgence in pathogen transmission after initial population suppression would have reduced human immunity to pathogen.

Plausible Pathway

Release of gene drive dsxFs#kh
transgene in An. coluzzii

Plausible Pathway Risk Hypotheses Analysis Plan
Release of gene drive dsxFemsPin
transgene in An, coluzzii
U
i a"g, next ”mnﬂ:fnt s Identify any valued species, such as
specialist pollinators, from field survey

} data that are co-located in the range

In: i n gene of species within An. gambiae and
mtarsaem:::ne: ::\GA.? ::mblaedm uniquely or predominantly share

2

Mating and transmission of transgene
to next generation

4

‘ aquatic habitats

Increase in frequency of gene drive
transgene in An. gambiae

Assess literature and evaluate data on

Sustained reduction in An. gambiae
competitor insect species of An.

population size
3 gambiae in West Africa
Release from competition of species X An. gambiae does not have any Ecological modelling to assess the
that is a competitor of both An. <l competitor species which are also capacity of the competitor species to
gambiae (A) and valued species Y (see 7| significant competitors of valued be released from competition with An.
diagram below) species gambiae
3 |

Y

Sustained reduction in An. gambiae
population size

¥

Sustained reduction in malaria
transmission

4

Calculate the net effect of increased
competition from species X on valued
species ¥ combined with the reduction
in competition on the valued species Y
from suppression effect of gene drive

in An. gambiae

'g:'f;ii%i:’:g::s??hmgsepf::;so)f( Increased competitiorg from species X
which is greater than release from on valued species ¥ will not outweigh
competition on species Y via the > the reductlp N in competition on
suppression effect of gene drive in An. valued species Y from suppression
gambiae effect of gene drive in An. gambiae

&

Reduction in population densities of
valued species ¥

&

Reduction in ecosystem services

= X ulation
/] =\ Sypren | X
- Gene Drive
-2 in species A // -N -
- Y ﬁ 2 -
A B A NEEr Y

Reduction in pre-existing human
acquired immune system protection to
pathogen and recruitment of children
into environment where there is no or
little disease challenge to their
immune systems

8

Recovery in population numbers of An.
gambiae following breakdown in
suppression from gene drive or
extinction of gene drive population
followed by invasion from an non-
gene drive populations

&

Increase in incidence of transmission
of pathogen

L

Lack of pre-existing immune system
protection causes increase in human
disease transmission beyond levels
pre-gene drive intervention

Risk Hypothesis

Sustained use of gene drive in
combination with existing insecticide
vector control interventions will
prevent an increase in transmission of
pathogen

Analysis Plan

Reduction in pre-existing human
immune system protection to
pathogen will be insufficient to
increase disease transmission above
pre-gene drive infection levels

Calculate impacts of using both gene
drive and insecticides on potential for
disease resurgence

Calculate the level of reduction of
immune system protection required to
impact disease transmission
incorporating loss of individual
immunity over time plus new recruits
into unchallenged environment

Compare the potential impact of
reductions in immune system
protection conferred by insecticide
use or SIT with those modelled from
gene drive interventions

« Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C et al. (2021) Malaria Journal




ERA modeling requires more ecological realism

Type of stressor/ interaction EFSA 2013 characteristic Implemented in GD models
Other North Skeeter MGDrivE ~ SLiM3
models et al. Buster
Abiotic factors Temperature v/ v v x x
Humidity v/ v v x x
Climatic/geographical barriers v/ v v/ v/ v
Biotic characteristic Distribution (before and after release) v v v v v
TO related Fitness v/ v v v 4
Reproductive biology (fertility and fecundity) before and after v/ v v/ v/ 4
release
Dispersal v/ v v/ v/ v
Population size, structure, sex ratio (before and after GM release) v v v v v
Reduction in efficiency/resistance development against GM v x x v v/
Changes in interactions (behavioural, genetic) between GMO and TO x x x x x
Interactions with other species (non- Hybridization # x x x x
target organisms) Pathogens (altered transmission range and frequency), increased v x x v/ x
vector competence
Adverse effects due to “low quality GM insects” e.g. increased human ~ x x x x x
biting rate or disease transmission
Prey x x x x x
Predators/predation x x x x x
Symbionts 72 x x /> x
Hosts (plants, animals) x x x v x
Parasites, pathogens x x x v/ x
Trophic level/food web effects x x x x x
Competitors (abundance, species composition) x x x x x
Ecosystem services x x x x x
Toxins/allergens associated with GMO x x x x x

* Friel® JL, Lalyer CR, Giese B, Simon S, Otto M (2023) Ecological Modelling



Surveillance as a cost driver
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Optimal density & layout of traps

MGSurvE 0.7.2.0 P

pip install MGSurvE I& Released: Aug 11,2022

MGSurvE

Navigation Project description

o o i
MGSurvE: Mosquito Gene SurveillancE

D Release history
MGSurvE is a project that optimizes mosquito traps' placement in complex

3 Download files heterogeneous landscapes in an effort to minimize the time to detection of genetic
variants of interest.

Please have a look at the documentation for more info and our pypi package for
Project links detailed installation instructions, and tutorials.

a Homepage python 3.9 | 3.10 | pypi package '0.7.2.0 | docker img [v0.7.2.0 PyTests | passing
Flake8 | passing CondaEnv |passing | License GPLv3 | () Open Source ? | Yes!

To install the package's latest stable version run (usage of anaconda for environment

Statistics management is strongly recommended):
GitHub statistics:

* Stars: 0 pip install MGSurvE

P Forks:1

MGSurvE requires the installation of the DEAP optimization package, which should
be installed automatically with our previous pip command. This package can also
be installed with conda install deap, if needed; or by having a look at DEAP's

© Openissues/PRs:
0

View statistics for this
project via Libraries.io £,
or by using our public
dataset on Google
BigQuery @

documentation for additional methods. Please have a look at our installation
instructions for common issues with some of the dependencies. Alternatively, pre-
build images from our Dockerhub can be pulled and used to avoid dependencies
issues.

« Sanchez C. HM, Smith DL, Marshall JM (2023) https://pypi.org/project/MGSurvE/
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Field trial modeling: Wolbachia as a case study

A Intervention Clusters
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« Utarini A, Indiani C, Ahmad RA, Tantowiyojo W et al. (2021) New England J Medicine



Field trial modeling: Spillover & TMLE
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« Smith T, Multerer L, Silkey M (2024) https://cran.r-project.org/web/packages/CRTspat/
« van der Laan MJ, Rubin D (2006) Targeted Maximum Likelihood Learning
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Initial resistance (rr0)

o A subset of identified risks are suited to modeling
o More ecological realism is needed S Tt & b

3. Monitoring & surveillance:

o Surveillance is expected to be a cost driver &
requires efficient design
o Monitoring should infer fitness costs early in a trial
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4. Field trial design: 2 04 % ' 2 04 % '
o Wolbachia provides a case study, with differences = i 5 :

o Exploring new techniques to extract more power 01 : 0.1 :
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o James Lab @ UC Irvine

o Bier Lab @ UCSD

o Dr Gordana Rasi¢ @ QIMR Berghofer

o Dr Samson Kiware @ Ifakara Health Institute
o Environmental Health Institute @ NEA

o Dr David Smith @ IHME, UW

o School of Public Health @ UC Berkeley

o Malaria Elimination Initiative @ UCSF
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