Modeling needs for gene drive mosquito projects

Gene Drive Research Forum 2024

John Marshall
Divisions of Epidemiology & Biostatistics
School of Public Health
University of California, Berkeley
john.marshall@berkeley.edu

Overview

Marshall JM, North AR (2023) Mosquito Gene Drives & Malaria Raban R, Marshall JM *et al.* (2023) Annual Review of Genetics

Target product profiles

Model specification:

Product parameters:

- Homing rate
- Resistance generation rate
- Fecundity/mating cost of gene drive allele
- Fecundity/mating cost of resistance allele
- Efficacy of transmission blocking*

Intervention parameters:

- Number of mosquitoes per release
- Number of releases

Setting:

- Initially, potential field sites
- Eventually, locations where gene drive may spread

Outcomes of interest:

- >20-50% reduction in prevalence
- >20-50% reduction in clinical incidence
- Impact within <6-12 months
- Duration of impact of >2-3 years

Target product profile:

 Product & intervention parameters that satisfy outcomes of interest

Mondal A, Vásquez VN, Marshall JM (2021) Frontiers in Tropical Diseases

Target product profiles for population replacement

Leung S, Windbichler N, Wenger EA, Bever CA et al. (2022) Malaria J

TP13 population replacement construct

Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM et al. (2023) PNAS

Fitness-related parameters

Genotypes: HW HR

D	AcTP13 (An. coluzzii)		
Parameter	Prior	Posterior	
p_H^M	97.8% (88.3% – 100%)	97.9% (82.5% - 99.9%)	
p_H^F	98.4% (94.4% – 99.999%)	98.5% (94.8% - 99.8%)	
p_B^F	N/A	N/A	
мнн	1.04 (0.99 - 1.10)	1.05 (0.99 - 1.10)	
m_H	1.78 (1.60 - 1.96)	1.78 (1.60 - 1.96)	
f_{HH}	-	2.42 (0.85 - 3.67)	
f _{ri}	-	2.15 (1.24 - 3.82)	

		GCIIC	rypc	3. IIV	v ,	•
ed or eye	0:-	_		=	Determi Stochas Data	
CFP+ & red or mosaic eye	0.5					
GF m	o: - 		-			
	0	1	2	3	4	5
		(Gene	ratio	n	

• Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM et al. (2023) PNAS

Malaria transmission probability

- Aleshnick M, Ganusov VV, Nasir G, Yenokyan G et al. (2020) PLoS Pathogens
- Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM et al. (2023) PNAS

Environmental risk assessment

Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C et al. (2021) Malaria Journal

ERA modeling requires more ecological realism

Type of stressor/ interaction	EFSA 2013 characteristic		Implemented in GD models					
		Other models	North et al.	Skeeter Buster	MGDrivE	SLiM3		
Abiotic factors	Temperature	✓	/	1	×	×		
	Humidity	✓	✓	✓	×	×		
	Climatic/geographical barriers	✓	1	✓	1	1		
Biotic characteristic	Distribution (before and after release)	✓	✓	✓	✓	✓		
TO related	Fitness	1	✓	✓	1	1		
	Reproductive biology (fertility and fecundity) before and after release	1	✓	1	✓	1		
	Dispersal	✓	✓	✓	✓	✓		
	Population size, structure, sex ratio (before and after GM release)	1	✓	✓	1	✓		
	Reduction in efficiency/resistance development against GM	✓	×	×	✓	✓		
	Changes in interactions (behavioural, genetic) between GMO and TO	×	×	×	×	×		
Interactions with other species (non-	Hybridization	×	×	×	×	×		
target organisms)	Pathogens (altered transmission range and frequency), increased vector competence	✓	×	×	✓	×		
	Adverse effects due to "low quality GM insects" e.g. increased human biting rate or disease transmission	×	×	×	×	×		
	Prey	×	×	×	×	×		
	Predators/predation	×	×	×	×	×		
	Symbionts	\checkmark^5	×	×	✓ ⁵	×		
	Hosts (plants, animals)	×	×	×	✓	×		
	Parasites, pathogens	×	×	×	✓	×		
	Trophic level/food web effects	×	×	×	×	×		
	Competitors (abundance, species composition)	×	×	×	×	×		
	Ecosystem services	×	×	×	×	×		
	Toxins/allergens associated with GMO	×	×	×	×	×		

Frieß JL, Lalyer CR, Giese B, Simon S, Otto M (2023) Ecological Modelling

Surveillance as a cost driver

Rašić G, Lobo NF, Jeffrey Gutiérrez EH, Sánchez C. HM, Marshall JM (2022) Frontiers in Genetics

Optimal density & layout of traps

Monitoring to infer fitness costs during a trial

- Hoffmann AA, Montgomery BL, Popovici J et al. (2011) Nature
- Carvalho DO, McKemey AR, Garziera L et al. (2015) PLoS Negl Trop Dis

Field trial modeling: Wolbachia as a case study

Utarini A, Indiani C, Ahmad RA, Tantowiyojo W et al. (2021) New England J Medicine

Field trial modeling: Spillover & TMLE

- Smith T, Multerer L, Silkey M (2024) https://cran.r-project.org/web/packages/CRTspat/
- van der Laan MJ, Rubin D (2006) Targeted Maximum Likelihood Learning

Recap

1. Target product profiles:

- Determine when technology is ready for the field
- Some parameters can't be measured prior to release
- Parameter requirements may depend on others

2. Risk assessment:

- A subset of identified risks are suited to modeling
- More ecological realism is needed

3. Monitoring & surveillance:

- Surveillance is expected to be a cost driver & requires efficient design
- Monitoring should infer fitness costs early in a trial

4. Field trial design:

- Wolbachia provides a case study, with differences
- Exploring new techniques to extract more power from field trial data

Distance to nearest discordant location
Distance to nearest discordant location

Acknowledgements

LAB MEMBERS:

- Héctor M. Sánchez C.
- o Rodrigo M. Corder
- Agastya Mondal
- Shuyi Yang
- Victor Mero
- Emma Lonstrup
- o Jared B. Bennett
- Váleri Vásquez
- o Sean L. Wu

- Yogita Sharma
- o Tomás León
- Sanjay Lamba
- o Francois Rerolle
- o Thien-An Ha
- Natasha Harrison
- Darpa Anireddy
- o Xingli Yu
- o Alan Hu

COLLABORATORS:

- Akbari Lab @ UCSD
- o James Lab @ UC Irvine
- o Bier Lab @ UCSD
- o **Dr Gordana Rašić** @ QIMR Berghofer
- o **Dr Samson Kiware** @ Ifakara Health Institute
- Environmental Health Institute @ NEA
- Dr David Smith @ IHME, UW
- School of Public Health @ UC Berkeley
- Malaria Elimination Initiative @ UCSF

FUNDERS:

