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Overview of talk

1. Zika virus:
« Questions that modeling can help us to address
« Results from recent modeling papers

2. Malaria in elimination settings:
« Importance of understanding heterogeneity

« Quantifying geographic heterogeneity using risk
maps

« Predicting the impact of elimination strategies
using mathematical models



Why model?

Biology of pathogen

Conceptual

Ecology of vector understanding

Demography of
human population

Validation with data
Contact patterns

Predictions

Interventions



Zika questions that modeling may help to inform

1. What implications does the current outbreak in Latin
America have for the US?

2. What is the expected time course of the current
outbreak in Latin America?

3. Is Zika here to stay? What are the expected long-
term dynamics of Zika in Latin America?

4. What impact can we expect vector control to have
on Zika incidence and the incidence of Zika-induced
microcephaly?

5. What about a Zika vaccine, If it becomes available?

6. What implications does the sexual transmission of
Zika have on the population-wide dynamics?



Compartmental model of Zika virus

Transmission dynamics of Zika virus in island populations: a
modelling analysis of the 2013-14 French Polynesia outbreak

Adam J. Kucharskil:”, Sebastian Funk!, Rosalind M. Eggo!, Henri-Pierre Mallet?,
W. John Edmunds®, Eric J. Nilles®
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Fitting compartmental models to incidence data
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Outbreak size seems to be determined by herd
Immunity threshold (HIT), itself determined by R,

+ Ry=2

* OQutbreak slows down after 1/2
of population has been infected

.+ R,=3

» Qutbreak slows down after 2/3 of
population has been infected



Implications for Latin America

Model-based projections of Zika virus infections

in childbearing women in the Americas J !’i R
. ; b '-.', - i
T. Alex Perkins'", Amir 5. Siraj’, Comrine Warren Ruktanonchai’, Moritz U.G. Kraemer', | ;
Andrew J. Tatem™ SHE
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economic index)

* 1 (T) = Mosquito death rate (function

RO .
of temperature) .- :
« n (T) = Virus incubation period in B oon

mosquito (function of temperature) i



Is Zika here to stay?

Zika Virus: Endemic Versus Epidemic Dynamics and Implications
for Disease Spread i the Americas

Sharon Bewick!, William F. Fagan®. Justin Calabrese?. Folashade Agusto®”
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Long-term dynamics of an immunizing infection
(the endemic state) c.f. Rubella
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among older age groups (c.f. Rubella)
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Implications for vector control

mbca?e#T)n(T)
u(T)r

RD(T) =

Vector control may reduce:

* m = Number of
mosquitoes per person

« a = Mosquito biting rate
And may increase:
* 1= Mosquito death rate

But may also delay infection
to child-bearing ages
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Implications for the US

10 4 Run A
0
2]
= R, < 1 so outbreaks are : ] ‘l
stochastic events 2 | ] -'
g o
0 40 a0 120 180 200 240 280 220 360
13: Run B
°]
:.'_
E_
5_
p | 2
1D_ T T T rll T T I—lll T I1 T T l T ’I T Inl T T T T T T
1 0 40 an 120 180 200 240 280 220 360
13 Run C
q 0 9 |
: \*'.
g J dehl}lj
2
' A\ ur o N




p
L N
p 2\ p L2
1< T 1 7 1\
a™ 0 a™> 0 a™>~ 0

The probability of a final outbreak of size nis: R,"*e®" n"2 / (n-1)!

By
-||'I._. -
L
=

BEnzy
=
—r

R,=0.89

\:_,
L]
LR
Ln

19985
20062 T
10 100

Duthreak size

R,=0.47 0.01L




Implications of sexual transmission

* R, = Number of partners per year
X Probability of transmission per
partnership
X Duration of infectiousness

= Duration of infectiousness = ~2 months?

» Therefore need at least one new
partnership every 2 months for R, > 1

= Potential to spread among high-risk
groups

= Unlikely to persist among general
population




Malaria elimination

= As malaria prevalence declines in
many areas, it becomes increasingly 0 far
focal and heterogeneous w

= Understanding this heterogeneity is 0 aﬂ“}‘r

important for predicting the impact of o~ P Q
PN

elimination strategies

= |[mportance of using data to quantify o
heterogeneity 0]

Bousema et al. (2010) PLoS Med.



Gonorrhea
Transmission Dynamics
and Control
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conzsidered. Let the average duraticne of infection, r':l1 and do, hoth
he 2B days. Here we assume that all new encounters are adeguate
contacts soe that g4 = gp = 1. Thus the core-noncore nedel 1s an
initial value problem with the differeatisl equations

ar, k. I,
G (by Ty+b,I,0(1-1,) - T, [4.1)

for 1 = 1,2, A flow dizgram for this model is given in figure 4.1,
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Figure 4.1 PFlgw diagram for tne coras-noreare model.



Hethcote-Yorke model of gonorrhea

Gonorrhea, United States, Calerdar years 19504582
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Casas
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Heterogeneity in the entomological inoculation rate (EIR)
EIR=EIR, x¢ x (1— pe *)xy

¢ = Individual variation in

" Variation with age W = Geographical variation
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Estimating geographical heterogeneity in the EIR

Malaria cases

Vegetation Population density

= A: Maps of:
 health-facility level malaria case data
« Environmental covariates (elevation and vegetation shown here)

» Population density
» B: Used to create fine-scale risk maps for Swaziland at the national scale

» C: And also at the village scale



Google Earth demonstration...
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What we’re deciding between...

Anti-parasite interventions & delivery strategies:

In high transmission settings: In low transmission settings:

MDA  Mass Drug Focal MDA Focal Mass Drug Administration
Administration

_ RACD Reactive Case Detection
MSAT Mass Screening and

Treatment

Anti-vector interventions:
LLINS Long Lasting Insecticide-treated Nets
IRS Indoor Residual Spraying with insecticides

Operational questions:

» Diagnostics (microscopy, RDTs, PCR)
» Treatment (ACTs, PQ)

» Radius of testing and treatment

» Desired coverage level




Constraints

= Currently being quantified from observational studies &
clinical trials...

Types of constraints:

Technical Inherent in the mathematical modeling
framework, describe limitations of currently-
available tools to reduce transmission

Operational Defined by logistical considerations (e.g.
human resources, transport, ability of national
organizations to carry out the program, etc.)

Financial Defined by program costs and funds available
over a sustained period

= Constrained optimization problem in which a desired
outcome (e.g. clinical incidence) is minimized by exploring
available intervention parameters subject to the above
constraints.



Compartmental model of malaria

T ) Treated
Prophylactic Treatment '

protection

Clinical disease

Susceptible

Griffin et al. (2010) PLoS Med.




Malaria model demonstration...
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