Can malaria, dengue & Zika be controlled by a CRISPR-based gene drive?

John M. Marshall john.marshall@berkeley.edu Division of Biostatistics and Epidemiology University of California, Berkeley

John Marshall

Samson Kiware

Héctor M. Sánchez C. Gordana Rašić

Sean Wu

Biyonka Liang

Jared Bennett

Sarafina Smith

Yogita Sharma

Valeri Vasquez

Gillian Chu

Francois Rerolle

Thien-An Ha

Yi Li

Optimal interventions to eliminate malaria

• Walker PGT, Griffin JT, Ferguson NM, Ghani AC (2016) Lancet Global Health

Arboviruses are on the rise worldwide

• Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K et al. (2016) Science 353: aaf8160

Homing-based CRISPR-mediated gene drive

Medea & toxin-antidote based gene drive

Transgenic mothers produce **toxin**

Transgenic offspring produce antidote

This causes the **death** of all **offspring** of heterozygous mothers that do not inherit the Medea allele (tt).

Public attitudes to gene editing for malaria control in Mali

"You have to start somewhere. From this, people will know whether it's good or bad... I would like you to conduct a trial in my village because I would like to be an example for another community." Elder, Koporo-na, Mali

"I would have to see an example of modified mosquitoes reducing malaria in another village before I believe this claim" Elder, Tienfala, Mali

• Marshal JM, Toure MB, Traore MM, Famenini S, Taylor CE (2010) Malaria Journal 9: 128

Can we conduct a confined field trial of gene-edited mosquitoes?

DARPA Safe Genes Program

Enable temporal, spatial, and reversible control of gene editors

Inhibit unwanted gene editing activity Remove engineered genes from environments to return to baseline

UC Irvine Malaria Initiative

Can CRISPR-based gene drive be effective at controlling disease on a wide scale?

HEG	
-----	--

Talk outline

Q1. Can we conduct a confined field trial of gene-edited mosquitoes?

Q2. Can CRISPR-based gene drive be effective at controlling disease on a wide scale?

Q3. What are the best approaches for quantifying mosquito movement patterns of relevance to both questions?

Q1. Can we conduct a confined field trial of gene-edited mosquitoes?

Semele & threshold-dependent gene drive

• Marshall JM, Pittman GW, Buchman A, Hay BA (2011) Genetics 187: 535-551.

Releases of Semele are confineable and reversible

Banambani, Mali

• Marshall JM, Pittman GW, Buchman A, Hay BA (2011) Genetics 187: 535-551.

Integrated spatially-explicit, ecological model

Mosquito Gene Drive Explorer (MGDrivE)

MGDrivE

Mosquitos + Tensors + Genetics + CS + Networks + Math + Coffee

View Releases List
Browse
Documentation
View on
Youtube
Fork on
GitHub
Download
ZIP File

Download TAR Ball

Developed in John Marshall's Lab by:

-Lead: Héctor M. Sánchez C. -Core Dev: Sean L. Wu,Jared Bennett -Spatial Analysis: Biyonka Liang, Sarafina Smith, Sabrina Wong -Movement Kernels: Partow Imani

...and, of course, our PI; John M, Marshall!

Mosquito Gene Drive Explorer

Brief Description

MGDrivE is a framework designed to serve as a testbed in which gene-drive releases for mosquito-borne diseases control can be tested. It is being developed to accommodate various mosquito-specific gene drive systems within a population dynamics model that allows migration of individuals between nodes in a spatial landscape.

Sánchez HM, Wu SL, Bennett JB, Marshall JM (2018) bioRxiv doi: http://dx.doi.org/10.1101/350488

MGDrivE: Inheritance module

Mother

Mother

Offspring

genotype

frequency

0.8

HR HB Father

hR

RB

BB

Offspring: RB

Offspring: BB

Sánchez HM, Wu SL, Bennett JB, Marshall JM (2018) bioRxiv doi: http://dx.doi.org/10.1101/350488 ٠

HR

HB Father hh

hR hB RR

RB BB

Mathematics of inheritance module

• The number of eggs having genotype *i* that are laid at time *t*, $E_{i,[t]}$, is given by:

$$E_{i,[t]} = \overline{1_{1 \times n}} \times \left(\beta \cdot (\overline{s_{n \times 1}} \otimes \overline{1_{n \times 1}}) \circ \overline{F_{[t]}} \circ \overline{Ih(,,i)} \circ \overline{\Lambda(,i)} \right) \times \overline{1_{n \times 1}}$$

$$\beta = \text{number of eggs produced per day}$$

$$s_{i} = \text{female genotype-specific multiplier}$$

$$\overline{M} = \begin{pmatrix} M_{1} \\ M_{2} \\ M_{3} \\ \vdots \\ M_{g} \end{pmatrix} \qquad \overline{\overline{F}} = \begin{pmatrix} F_{11} & F_{12} & F_{13} & \cdots & F_{1g} \\ F_{21} & F_{22} & F_{23} & \cdots & F_{2g} \\ F_{31} & F_{32} & F_{33} & \cdots & F_{3g} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ F_{g1} & F_{g2} & F_{g3} & \cdots & F_{gg} \end{pmatrix}$$

Number of adult males having each genotype, M_i

Number of adult females having each mated genotype, F_{ij} , i = owngenotype, j = genotype of father For each pairing, the vertical columns represent the proportion of offspring having each genotype

MGDrivE: Ecology module

Mosquito vector species of interest

Aedes aegypti

Anopheles gambiae

Anopheles stephensi

Parameter	Symbol	Ae. aegypti	An. gambiae	$C.\ capitata$
Egg production per female (day^{-1})	β	20 [36]	32 [37]	20 [38]
Duration of egg stage (days)	T_E	5 39	1 37	2 38
Duration of larval stage (days)	T_L	6 39	13 37	6 38
Duration of pupa stage (days)	T_P	4 39	1 37	10[38]
Daily population growth rate (day^{-1})	r_M	1.175 40	1.096 41	1.031 42
Daily mortality risk of adult stage (day^{-1})	μ_M, μ_F	0.090 [43 - 45]	0.123 41	0.100 46

Table 2. Life history module parameter values for three species of interest (at a temperature of 25 Celsius).

MGDrivE: Landscape module

Landscapes of interest for mosquito vectors

Epidemiological extension for mosquito-borne diseases

Application: Chromosomal translocations

• Buchman A, Ivy T, Marshall JM, Akbari OS, Hay BA (2018) ACS Synthetic Biology

Application: Chromosomal translocations

NATURE, VOL. 218, APRIL 27, 1968

• Buchman A, Ivy T, Marshall JM, Akbari OS, Hay BA (2018) ACS Synthetic Biology

Application: Translocations with remediation

Landscapes of interest for Aedes aegypti

Application: Replacement & remediation of translocations

- Data suggests there are ~15 adult Ae. aegypti per household
- Weekly releases of 20 adult males having the translocation
- Vary household coverage & number of releases

• Sánchez HM, Bennett JB, Wu SL, Rasic GL, Akbari OS, Marshall JM (2019) bioRxiv

Application: Confinement of translocations

- Consider translocations fixing in Yorkeys Knob
- Consider batches of Ae. aegypti being transported from Yorkeys Knob to Trinity Park by human transport
- Vary size & number of daily migration events

For a batch size of 5 adults, ≥20 daily batch migration events required

• Sánchez HM, Bennett JB, Wu SL, Rasic GL, Akbari OS, Marshall JM (2019) bioRxiv

Q2. Can CRISPR-based gene drive be effective at controlling disease on a wide scale?

Application: Homing drive targeting female fertility gene

LETTERS

nature biotechnology

A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles gambiae*

• Hammond A, Galizi R, Kyrou K, Simoni A, ..., Windbichler N, Crisanti A, Nolan T (2016) Nature Biotechnology 34: 78-83

Application: Homing drive targeting female fertility gene

Application: Homing drive targeting female fertility gene

Multiplex number:	In-frame resistant allele generation rate:	Population size capable of eliminating (90% of simulations):
1	0.13%	32
2	0.00017%	24 thousand
3	2.2 x 10 ⁻⁹	19 million
4	2.9 x 10 ⁻¹²	14 billion

• Marshall JM, Buchman A, Sanchez HM, Akbari OS (2017) Nature Sci Rep 7: 3776

A CRISPR–Cas9 gene drive targeting *doublesex* causes complete population suppression in caged *Anopheles gambiae* mosquitoes

nature biotechnology

Kyros Kyrou^{1,2}, Andrew M Hammond^{1,2}, Roberto Galizi¹, Nace Kranjc¹, Austin Burt¹, Andrea K Beaghton¹, Tony Nolan¹, Andrea Crisanti¹

• Kyros K, Hammond AM, Galizi R, ..., Nolan T, Crisanti A (2018) Nature Biotechnol 36, 1062–1066

Current CRISPR gene drive systems are likely to be highly invasive in wild populations

Charleston Noble^{1,2,3†}, Ben Adlam^{1,4†}, George M Church^{2,3}, Kevin M Esvelt⁵*, Martin A Nowak^{1,6,7}*

•

The New York Times

MATTER

'Gene Drives' Are Too Risky for Field Trials, Scientists Say

That may well mean that experiments in the real world are just too risky right now.

"The very idea of a field trial is that it's a trial that's confined to an area," Dr. Esvelt said. "Our model indicates that this is not the case."

"It's an important contribution," said John M. Marshall, a mathematical biologist at the University of California, Berkeley, said of the new research. "A study like this is the beginning of a formal analysis we need."

Noble C, Adlam B, Church GM, Esvelt KM *et al.* (2018) eLife doi: 10.7554/eLife.33423

MCR homing drive construct from Bier Lab, UCSD

5

Generation

10

0.0 -

Generation

Generation

GFP-/y+ males

Model fitting: Current homing-based drive system

Model fitting: Current homing-based drive system

- Fitness cost of H allele = 46.6% (Crl: 45.1-47.9%)
- Fitness cost of B allele = 37.9% (Crl: 36.3-39.4%)

Expt

Current systems don't spread far... but others might

Allele frequencies (current system):

Application: CRISPR-based split drive

• Li M, Yang T, Kandul N, Biu M, Gamez S, Bennett JB, Sánchez HM, ..., Marshall JM, Akbari OS (2019) bioRxiv

Application: CRISPR-based split drive

• Li M, Yang T, Kandul N, Biu M, Gamez S, Bennett JB, Sánchez HM, ..., Marshall JM, Akbari OS (2019) bioRxiv

Application: Precision-guided sterile insect technique

• Kandul NP, Liu J, Sánchez HM, Wu SL, Marshall JM, Akbari OS (2019) Nature Communications 10: 84

Application: Precision-guided sterile insect technique

• Kandul NP, Liu J, Sánchez HM, Wu SL, Marshall JM, Akbari OS (2019) Nature Communications 10: 84

Q3. What are the best approaches for quantifying mosquito movement patterns of relevance to both questions?

Inspiration from coral trout

• Williamson DH, Harrison HB, Almany GR, Berumen ML et al. (2016) Mol. Ecol. 25L 6039-6054

Close-kin genetic methods to infer mosquito dispersal

Determining familial relationships from lab colonies

MOLECULAR ECOLOGY

ORIGINAL ARTICLE 🔂 Open Access 💿 😧

Allele frequency-free inference of close familial relationships from genotypes or low-depth sequencing data

Ryan K. Waples, Anders Albrechtsen 🔀, Ida Moltke 🔀

First published: 21 November 2018 | https://doi.org/10.1111/mec.14954

Determining power of close-kin methods in silico

Summary

Q1. Can we conduct a confined field trial of gene-edited mosquitoes?

- Threshold-dependent systems may be confineable to partially isolated populations
- More study is needed on population structure & batch migration

Q2. Can CRISPR-based gene drive be effective at controlling disease on a wide scale?

- Multiplexing guide RNAs could sufficiently reduce resistant allele generation rates
- More study is needed of the molecular mechanisms
- Current homing-based drive systems are not as invasive as hyped; but future ones could be

Q3. What are the best approaches for quantifying mosquito movement patterns?

• Close-kin capture methods are promising for inferring details of the fine-scale movement patterns of mosquitoes

Acknowledgements

○ Francois Rerolle

• Biyonka Liang

○ Sarafina Smith

○ Thien-An Ha

• Gillian Chu

• Maya Shen

• Yi Li

LAB MEMBERS:

- o Héctor M. Sánchez C.
- \circ Sean L. Wu
- Jared B. Bennett
- \circ Valeri Vasquez
- Yogita Sharma
- o **Tomás León**
- Victor Ferman
- Gordana Rasic
- o Samson Kiware

COLLABORATORS:

- o Akbari Lab @ UC Riverside
- Lanzaro Lab @ UC Davis
- James Lab @ UC Irvine
- Bier Lab @ UCSD
- o Hay Lab @ Caltech
- Malaria Elimination Initiative @ UCSF
- $\circ\,$ Prof David Smith @ IHME, UW
- School of Public Health @ UC Berkeley

FUNDERS:

BILL& MELINDA GATES foundation The Parker Foundation

