CRISPR-Cas9-based gene drive architecture for
control of agricultural pests
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Homing-based CRISPR-mediated gene drive
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Optimal interventions to eliminate malaria
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Not possible!

«  Walker PGT, Griffin JT, Ferguson NM, Ghani AC (2016) Lancet Global Health



Public attitudes to gene ed

iting for malaria control in Mali

“You have to start somewhere. From
this, people will know whether it’s good
or bad... | would like you to conduct a
trial in my village because | would like to
be an example for another community.”
Elder, Koporo-na, Mali

“I would have to see an example
of modified mosquitoes reducing
malaria in another village before |

believe this claim”
Elder, Tienfala, Mali

Marshal JM, Toure MB, Traore MM, Famenini S, Taylor CE (2010) Malaria Journal 9: 128



Can we conduct a confined field trial of gene-edited
mosquitoes?

Gene-edited mosquitoes Wild-type mosquitoes



Modeling as data integration to address specific questions

M ito lif le:
Inheritance pattern: osquito life cycle
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Mosquito Gene Drive Explorer (MGDrivE)

MGDrivE

Mosquitos + Tensors +
Genetics + CS + Networks +
Math + Coffee
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Developed in John Marshal's Lab by:

-Lead: Héctor M. Sanchez C.

-Core Dev: Sean L. Wu,Jared Bennett

-Spatial Analysis: Biyonka Liang, Sarafina Smith,
Sabrina Wong

-Movement Kernels: Partow Imani

...and, of course, our Pl: John M. Marshall!

Mosquito Gene Drive
Explorer

Brief Description

MGDrivE is a framework designed to serve as a testbed in which gene-drive releases for mosquito-borne diseases control
can be tested. It is being developed to accommodate various mosquito-specific gene drive systems within a population

dynamics model that allows migration of individuals between nodes in a spatial landscape.
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Application to chromosomal translocations

Figure 1
A Normal chromosomes: B Translocated chromosomes:
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Buchman A, vy T, Marshall JM, Akbari OS, Hay BA (2018) ACS Synthetic Biology



MGDrivE: Translocations with remediation
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Application to toxin-antidote-based underdominance
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Construct A: Construct B:

Maternal Maternal
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B 75% release (all male)
B 50% release (all male)
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Akbari OS, Matzen KD, Marshall JM, Huang H et al. (2013) Current Biology



MGDrivE: Toxin-antidote-based underdominance




Homing-based gene drive with resistant alleles
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MGDrivE: Homing-based gene drive with resistance
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ting to more realistic landscapes
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Fine-scale movement patterns from parentage analysis

A. Plectropomus maculatus
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Williamson DH, Harrison HB, Almany GR, Berumen ML et al. (2016) Mol. Ecol. 25L 6039-6054



Intermediate movement from identity by descent (IBD)

- I A
[l i - f— 3
O
i
l 2
[
! ' 1
Y

! IBD Block

of

 Ringbauer H, Coop G, Barton NH (2017) Genetics doi: 10.1534/genetics.116.196220.



Insect agricultural pests of interest
A

Drosophila suzukii Ceratitis capitata

Asian citrus psyllid Pink bollworm



E Synthetically engineered Medea gene drive system
% the worldwide crop pest Drosophila suzukii

Anna Buchman®”*, John M. Marshall®, Dennis Ostrovski*®, Ting Yang®®, and Omar S. Akbari®® <"
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E Synthetically engineered Medea gene drive system in
E the worldwide crop pest Drosophila suzukii

Anna Buchman®”*, John M. Marshall®, Dennis Ostrovski*®, Ting Yang®®, and Omar S. Akbari®® <"

Fitness costs halved, 93% toxin efficiency
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drive for insect pest management

PNAS
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Consequences of instant induction of resistance
evolution on a sex conversion-based suppression gene
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Consequences of instant induction of resistance
evolution on a sex conversion-based suppression gene
drive for insect pest management

Mohammad KaramiNejadRanjbar1, Kolja Eckermann’, Hassan Ahmed', Hector Sanchez C.2, Stefan Dippel1, John
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Ecological models for agricultural pests




Ecological models for agricultural pests

F--------IE-r--------------|
o | I
0 |

(38—

-----------L--

B

9




Spatial habitat models for agricultural pests




Questions for the group

. Which agricultural pest species would be of most
interest for gene drive applications?

. Which crop species and geographies would be of
most interest? At what scale?

. What would the target product profile of the gene
drive system be?

. How could this strategy complement other
agricultural pest control techniques?
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