CRISPR-Cas9-based gene drive architecture for control of agricultural pests

John Marshall Division of Biostatistics and Epidemiology john.marshall@berkeley.edu

John Marshall

Samson Kiware

Hector Sanchez

Sean Wu

Tomas Leon

Gordana Rašić

Jared Bennett

Sarafina Smith

Yogita Sharma

Partow Imani

Biyonka Liang

Homing-based CRISPR-mediated gene drive

Optimal interventions to eliminate malaria

Walker PGT, Griffin JT, Ferguson NM, Ghani AC (2016) Lancet Global Health

Public attitudes to gene editing for malaria control in Mali

"You have to start somewhere. From this, people will know whether it's good or bad... I would like you to conduct a trial in my village because I would like to be an example for another community."

Elder, Koporo-na, Mali

"I would have to see an example of modified mosquitoes reducing malaria in another village before I believe this claim"

Elder, Tienfala, Mali

• Marshal JM, Toure MB, Traore MM, Famenini S, Taylor CE (2010) Malaria Journal 9: 128

Can we conduct a confined field trial of gene-edited mosquitoes?

Modeling as data integration to address specific questions

Inheritance pattern:

Mosquito life cycle:

Disease epidemiology:

Mosquito Gene Drive Explorer (MGDrivE)

MGDrivE

Mosquitos + Tensors +
Genetics + CS + Networks +
Math + Coffee

View Releases List

Browse Documentation

> View on Youtube

Fork on GitHub

Download ZIP File

Download TAR Ball

Developed in John Marshall's Lab by:

- -Lead: Héctor M. Sánchez C.
- -Core Dev: Sean L. Wu, Jared Bennett
- -Spatial Analysis: Biyonka Liang, Sarafina Smith, Sabrina Wong
- Movement Kernels: Partow Imani

Mosquito Gene Drive Explorer

Brief Description

MGDrivE is a framework designed to serve as a testbed in which gene-drive releases for mosquito-borne diseases control can be tested. It is being developed to accommodate various mosquito-specific gene drive systems within a population dynamics model that allows migration of individuals between nodes in a spatial landscape.

Demonstration

Application to chromosomal translocations

Buchman A, Ivy T, Marshall JM, Akbari OS, Hay BA (2018) ACS Synthetic Biology

MGDrivE: Translocations with remediation

Application to toxin-antidote-based underdominance

• Akbari OS, Matzen KD, Marshall JM, Huang H et al. (2013) Current Biology

MGDrivE: Toxin-antidote-based underdominance

Homing-based gene drive with resistant alleles

MGDrivE: Homing-based gene drive with resistance

Extrapolating to more realistic landscapes

Fine-scale movement patterns from parentage analysis

• Williamson DH, Harrison HB, Almany GR, Berumen ML et al. (2016) Mol. Ecol. 25L 6039-6054

Intermediate movement from identity by descent (IBD)

Ringbauer H, Coop G, Barton NH (2017) Genetics doi: 10.1534/genetics.116.196220.

Insect agricultural pests of interest

Ceratitis capitata

Asian citrus psyllid

Pink bollworm

Synthetically engineered *Medea* gene drive system in the worldwide crop pest *Drosophila suzukii*Anna Buchman^{a,b,c}, John M. Marshall^d, Dennis Ostrovski^{a,b}, Ting Yang^{a,b,c}, and Omar S. Akbari^{a,b,c,e,1}

Anna Buchman^{a,b,c}, John M. Marshall^d, Dennis Ostrovski^{a,b}, Ting Yang^{a,b,c}, and Omar S. Akbari^{a,b,c,e,1}

Synthetically engineered *Medea* gene drive system in the worldwide crop pest *Drosophila suzukii*Anna Buchman^{a,b,c}, John M. Marshall^d, Dennis Ostrovski^{a,b}, Ting Yang^{a,b,c}, and Omar S. Akbari^{a,b,c,e,1}

Anna Buchman^{a,b,c}, John M. Marshall^d, Dennis Ostrovski^{a,b}, Ting Yang^{a,b,c}, and Omar S. Akbari^{a,b,c,e,1}

Consequences of instant induction of resistance evolution on a sex conversion-based suppression gene drive for insect pest management

Mohammad KaramiNejadRanjbar¹, Kolja Eckermann¹, Hassan Ahmed¹, Hector Sanchez C.², Stefan Dippel¹, John Marshall³, Ernst A. Wimmer¹

Consequences of instant induction of resistance evolution on a sex conversion-based suppression gene drive for insect pest management

Mohammad KaramiNejadRanjbar¹, Kolja Eckermann¹, Hassan Ahmed¹, Hector Sanchez C.², Stefan Dippel¹, John Marshall³, Ernst A. Wimmer¹

Ecological models for agricultural pests

Ecological models for agricultural pests

Spatial habitat models for agricultural pests

Questions for the group

- 1. Which agricultural pest species would be of most interest for gene drive applications?
- 2. Which crop species and geographies would be of most interest? At what scale?
- 3. What would the target product profile of the gene drive system be?
- 4. How could this strategy complement other agricultural pest control techniques?

Acknowledgements

COLLABORATORS:

MARSHALL LAB @ UC BERKELEY

Hector M. Sanchez C., Sean L. Wu, Gordana Rasic, Jared Bennett, Yogita Sharma, Samson S. Kiware, Partow Imani, Biyonka Liang, Tomas Leon *et al*.

OTHERS:

- o Akbari Lab @ UC Riverside
- o James Lab @ UC Irvine
- o Bier Lab @ UCSD
- Hay Lab @ Caltech
- Lanzaro Lab @ UC Davis
- Malaria Elimination Initiative @ UCSF
- o Prof David Smith @ IHME, UW
- School of Public Health @ UC Berkeley

FUNDERS:

