Can malaria, dengue and Zika be controlled by CRISPR-based gene drive?

John M. Marshall john.marshall@berkeley.edu Division of Biostatistics and Epidemiology University of California, Berkeley

John Marshall

Samson Kiware

Hector Sanchez

Sean Wu

Tomas Leon

Jared Bennett

Sarafina Smith

Yogita Sharma

Partow Imani

Biyonka Liang

Valeri Vasquez

Francois Rerolle

Yi Li

Optimal interventions to eliminate malaria

• Walker PGT, Griffin JT, Ferguson NM, Ghani AC (2016) Lancet Global Health

Homing-based CRISPR-mediated gene drive

Medea & toxin-antidote based gene drive

Transgenic mothers produce toxin

Transgenic offspring produce antidote

This causes the **death** of all **offspring** of heterozygous mothers that do not inherit the Medea allele (tt).

Public attitudes to gene editing for malaria control in Mali

"You have to start somewhere. From this, people will know whether it's good or bad... I would like you to conduct a trial in my village because I would like to be an example for another community." Elder, Koporo-na, Mali

"I would have to see an example of modified mosquitoes reducing malaria in another village before I believe this claim" Elder, Tienfala, Mali

• Marshal JM, Toure MB, Traore MM, Famenini S, Taylor CE (2010) Malaria Journal 9: 128

Q1. Can we conduct a confined field trial of gene-edited mosquitoes?

Q2. Can CRISPR-based gene drive be effective at controlling disease on a wide scale?

Talk outline

Q1. Can we conduct a confined field trial of gene-edited mosquitoes?

Q2. Can CRISPR-based gene drive be effective at controlling disease on a wide scale?

Q3. What are the best approaches for quantifying mosquito movement patterns of relevance to both questions?

Q1. Can we conduct a confined field trial of gene-edited mosquitoes?

Semele & threshold-dependent gene drive

• Marshall JM, Pittman GW, Buchman A, Hay BA (2011) Genetics 187: 535-551.

Releases of Semele are confineable and reversible

Banambani, Mali

• Marshall JM, Pittman GW, Buchman A, Hay BA (2011) Genetics 187: 535-551.

Integrated spatially-explicit, ecological model

Mosquito Gene Drive Explorer (MGDrivE)

MGDrivE

Mosquitos + Tensors + Genetics + CS + Networks + Math + Coffee

View Releases List Browse Documentation View on Youtube Fork on GitHub Download ZIP File

> Download TAR Ball

Developed in John Marshall's Lab by:

-Lead: Héctor M. Sánchez C. -Core Dev: Sean L. Wu,Jared Bennett -Spatial Analysis: Biyonka Liang, Sarafina Smith, Sabrina Wong -Movement Kernels: Partow Imani

Mosquito Gene Drive Explorer

Brief Description

MGDrivE is a framework designed to serve as a testbed in which gene-drive releases for mosquito-borne diseases control can be tested. It is being developed to accommodate various mosquito-specific gene drive systems within a population dynamics model that allows migration of individuals between nodes in a spatial landscape.

Demonstration

...and, of course, our PI: John M. Marshall!

MGDrivE: Inheritance module

Mother

Mother

<u> 북</u> 북 북 북 북 북 북 북 왕 왕 왕

Hh

HR

hh hR hB

RR

RB

BB

Offspring genotype frequency

0.6

0.4

0.2

HR HB hh hR Father hB RR

Offspring: RR

Offspring: BB

hR hB RR

RB BB

MGDrivE: Ecology module

Mosquito vector species of interest

Aedes aegypti

Anopheles gambiae

Anopheles stephensi

MGDrivE: Landscape module

Landscapes of interest for mosquito vectors

Epidemiological extension for mosquito-borne diseases

MGDrivE: Tensor modeling framework

MGDrivE: Tensor modeling framework

Inheritance & oviposition:

$$\overline{O(T_x)} = \sum_{j=1}^n \left(\left(\left(\beta * \overline{s} * \overline{Af_{[t-T_x]}} \right) * \overline{\overline{Ih}} \right) * \Lambda \right)_{ij}^\top$$

Adult male survival & $\overline{Am_{[t]}} = \overline{Am_{[t-1]}} * (1 - \mu_{ad}) * \overline{\omega_m} + (1 - \overline{\phi}) * \overline{E'} + \overline{\nu m_{[t-1]}}$ development:

Adult male migration:

$$\overline{Am^{i}_{(t)}} = \sum \overline{A^{j}_{m}} \otimes \overline{\overline{\tau m_{[t-1]}}}$$

Reciprocal chromosomal translocations

Reciprocal chromosomal translocations

NATURE, VOL. 218, APRIL 27, 1968

• Buchman A, Ivy T, Marshall JM, Akbari OS, Hay BA (2018) ACS Synthetic Biology

MGDrivE: Translocations with remediation

Toxin-antidote-based underdominance

• Akbari OS, Matzen KD, Marshall JM, Huang H et al. (2013) Current Biology

MGDrivE: Toxin-antidote-based underdominance

Q2. Can CRISPR-based gene drive be effective at controlling disease on a wide scale?

Homing-based gene drive targeting a female fertility gene & resistant allele generation

LETTERS

nature biotechnology

A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles gambiae*

- Homing rate = 98%
- Non-cleavage rate = 1%
- Resistant allele generation rate = 0.13% (in-frame indels)
- Fertility of heterozygous females reduced by 90.7%

• Hammond et al. (2016) Nature Biotechnology

Expected dynamics of Hammond et al. (2016) construct

- Homing rate = 98%
- Non-cleavage rate = 1%
- Resistant allele generation rate = 0.13% (in-frame indels)
- Fertility of heterozygous females reduced by 90.7%

- Homing rate = 98%
- Non-cleavage rate = 1%
- Resistant allele generation rate = 0.13% (in-frame indels)
- Fertility of heterozygous females same as wild-type

• Marshall JM, Buchman A, Sanchez HM et al. (2017) Nature Sci Rep 7: 3776

Multiplexing gRNAs as a solution to resistant alleles

• Marshall JM, Buchman A, Sanchez HM et al. (2017) Nature Sci Rep 7: 3776

MGDrivE: Homing-based gene drive with resistance

Q3. What are the best approaches for quantifying mosquito movement patterns of relevance to both questions?

Fine-scale movement patterns from parentage analysis

• Williamson DH, Harrison HB, Almany GR, Berumen ML et al. (2016) Mol. Ecol. 25L 6039-6054

Close-kin capture methods to infer mosquito dispersal

Incorporating parental IDs into MGDrivE

Single-day release-to-recapture distance (meters)

Importance of environmental barriers for Ae. aegypti

Figure 3: Loiselle's k estimates for sample pairs of relatedness k > 0.046875. Pairs of 0.09375 < k < 0.1875 are most likely half-sibs, those of k < 0.1875 are most likely full-sibs. Most related pairs were found within the same trap, but separation distances of up to 1312m were observed.

• Schmidt TL, Filipovic I, Hoffmann AA, Rasic G (2018) Heredity 120: 386–395

Movement rates inferred from F_{ST} values for An. gambiae

• Marsden CD, Cornel A, Lee Y, Sanford MR et al. (2013) Evol. App. 6: 706-720

Intermediate movement from identity by descent (IBD)

• Ringbauer H, Coop G, Barton NH (2017) Genetics doi: 10.1534/genetics.116.196220.

Summary

Q1. Can we conduct a confined field trial of gene-edited mosquitoes?

- Threshold-dependent systems may be confineable to partially isolated populations
- More study is needed on mosquito population structure

Q2. Can CRISPR-based gene drive be effective at controlling disease on a wide scale?

- Multiplexing guide RNAs could sufficiently reduce resistant allele generation rates
- More study is needed of the molecular mechanisms

Q3. What are the best approaches for quantifying mosquito movement patterns of relevance to both questions?

- Close-kin capture methods are promising for inferring details of the fine-scale movement patterns of mosquitoes
- IBD methods may be appropriate for inferring intermediate-to-long distance dispersal

Acknowledgements

COLLABORATORS:

MARSHALL LAB @ UC BERKELEY

Hector M. Sanchez C., Sean L. Wu, Gordana Rasic, Jared Bennett, Yogita Sharma, Samson S. Kiware, Tomas Leon, Partow Imani, Biyonka Liang, Yi Li, Valeri Vasquez, Francois Rerolle, Sarafina Smith

OTHERS:

- Akbari Lab @ UC Riverside
- Lanzaro Lab @ UC Davis
- James Lab @ UC Irvine
- o Bier Lab @ UCSD
- Hay Lab @ Caltech
- Malaria Elimination Initiative @ UCSF
- $\circ\,$ Prof David Smith @ IHME, UW
- School of Public Health @ UC Berkeley

FUNDERS:

Innovative Genomics Institute

UCIRVINE

BILL& MELINDA GATES foundation

The Parker Foundation