THE MARSHALL LAB
  • Home
  • Publications
  • Courses
  • People
  • Diversity
  • Join the Lab
Pre-prints

Picture
99. Li HH, Su MP, Wu SC, Tsou HH, Chang MC, Cheng YC, Tsai KN, Wang HW, Chen GH, Tang CK, Chung PJ, Tsai WT, Huang LR, Yueh YA, Chen HW, Pan CY, Akbari OS, Chang HH, Yu GY, Marshall JM, Chen CH (2023) Mechanical transmission of dengue virus by Aedes aegypti may influence disease transmission dynamics during outbreaks. bioRxiv doi: https://doi.org/10.1101/2023.03.07.531453​
https://www.biorxiv.org/content/10.1101/2023.03.07.531453v1.full.pdf


Picture
98. Vásquez VN, Kueppers LM, Rašić G, Marshall JM (2022) wMel replacement of dengue-competent mosquitoes is robust to near-term climate change. bioRxiv doi: https://doi.org/10.1101/2022.10.12.511962​
https://www.biorxiv.org/content/10.1101/2022.10.12.511962v1.full.pdf​


Picture
97. Smidler AL, Pai JJ, Apte RA, Sánchez C. HM, Corder RM, Gutiérrez EJ, Thakre N, Antoshechkin I, Marshall JM, Akbari OS (2022) A confinable female-lethal population suppression system in the malaria vector, Anopheles gambiae. bioRxiv doi: https://doi.org/10.1101/2022.08.30.505861​
https://www.biorxiv.org/content/10.1101/2022.08.30.505861v1.full.pdf


Picture
96. Rašić G, Filipović I, Wu SL, León TM, Bennett JB, Sánchez C. HM, Marshall JM, Trewin BJ (2021) Eliminating Aedes aegypti from its southern margin in Australia: Insights from genomic data and simulation modeling. bioRxiv doi: https://doi.org/10.1101/2021.08.21.457232​https://www.biorxiv.org/content/10.1101/2021.08.21.457232v1.full.pdf


Picture
95. Wu SL, Dolgert AJ, Lewnard JA, Marshall JM, Smith DL (2020) Principled simulation of agent-based models in epidemiology. bioRxiv doi: https://doi.org/10.1101/2020.12.21.423765
https://www.biorxiv.org/content/10.1101/2020.12.21.423765v1.full.pdf


​2023

Picture
94. Rerolle F, Dantzer E, Phimmakong T, Lover AA, Hongvanthong B, Phetsouvanh R, Marshall JM, Sturrock HJW, Bennett A (2023) Characterizing mobility patterns of forest goers in southern Lao PDR using GPS loggers. Malaria Journal 22: 38 
https://malariajournal.biomedcentral.com/articles/10.1186/s12936-023-04468-8


Picture
93. Terradas G, Bennett JB, Li Z, Marshall JM, Bier E (2023) Genetic conversion of a split-drive into a full-drive element. Nature Communications 14: 191 https://www.nature.com/articles/s41467-022-35044-4
Press:
Innovative Genomics Institute News: Researchers create new system for safer gene drive testing and development


​2022

Picture
92. Sharma Y, Bennett JB, Rašić G, Marshall JM* (2022) Close-kin mark-recapture methods to estimate demographic parameters of mosquitoes. PLoS Computational Biology 18: e1010755​
*Corresponding author
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010755


Picture
91. Taitingfong RI, Triplett C, Vásquez VN, Rajagopalan RM, Raban R, Roberts A, Terradas G, Baumgartner B, Emerson C, Gould F, Okumu F, Schairer CE, Bossin HC, Buchman L, Campbell KJ, Clark A, Delborne J, Esvelt K, Fisher J, Friedman RM, Gronvall G, Gurfield N, Heitman E, Kofler N, Kuiken T, Kuzma J, Manrique-Saide P, Marshall JM, Montague M, Morrison AC, Opesen CC, Phelan R, Piaggio A, Quemada H, Rudenko L, Sawadogo N, Smith R, Tuten H, Ullah A, Vorsino A, Windbichler N, Akbari OS, Long K, Lavery JV, Evans SW, Tountas K, Bloss CS (2022) Exploring the value of a global gene drive project registry. Nature Biotechnology doi: https://doi.org/10.1038/s41587-022-01591-w​
https://www.nature.com/articles/s41587-022-01591-w​
Press:
UCSD News: Experts from 14 nations discuss global gene drive project registry​


Picture
90. Kandul NP, Liu J, Buchman A, Shriner IC, Corder RM, Warsinger-Pepe N, Yang T, Yadav AK, Scott MJ, Marshall JM, Akbari OS (2022) Precision guided sterile males suppress populations of an invasive crop pest. GEN Biotechnology 1: 372-385
https://www.liebertpub.com/doi/10.1089/genbio.2022.0019​
​Press:
Innovative Genomics Institute News: CRISPR-based technology targets global crop pest


Picture
89. Vásquez VN, Reddy MR, Marshall JM (2022) Environmentally appropriate vector control is facilitated by standard metrics for simulation-based evaluation. Frontiers in Tropical Diseases 3: 953212
https://www.frontiersin.org/articles/10.3389/fitd.2022.953212/full


Picture
88. Connolly JB, Mumford JD, Glandorf DCM, Hartley S, Lewis OT, Evans SW, Turner G, Beech C, Sykes N, Coulibaly MB, Romeis J, Teem JL, Tonui W, Lovett B, Mankad A, Mnzava A, Fuchs S, Hackett TD, Landis WG, Marshall JM, Aboagye-Antwi F (2022) Recommendations for environmental risk assessment of gene drive applications for malaria vector control. Malaria Journal 21: 152
​https://malariajournal.biomedcentral.com/articles/10.1186/s12936-022-04183-w


Picture
87. Hossain MP, Zhou W, Ren C, Marshall JM, Yuan HY (2022) Determining the effects of preseasonal climate factors toward dengue early warning system in Bangladesh. PLoS Global Public Health 2: e0000047
https://journals.plos.org/globalpublichealth/article?id=10.1371/journal.pgph.0000047​


Picture
86. Mondal A, Vásquez VN, Marshall JM* (2022) Target product profiles for mosquito gene drives: Incorporating insights from mathematical models. Frontiers in Tropical Diseases 3: 828876
*Corresponding author

​https://www.frontiersin.org/articles/10.3389/fitd.2022.828876


Picture
85. Kaduskar B, Kushwah RBS, Auradkar A, Guichard A, Li M, Bennett JB, Ferreira Julio AH,  Marshall JM, Montell C, Bier E (2022) Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nature Communications 13: 291 
​https://www.nature.com/articles/s41467-021-27654-1

Press:
UCSD News: Genetic strategy reverses insecticide resistance

Wired: Could CRISPR flip the switch on insects' resistance to pesticides?


Picture
84. Rašić G, Lobo NF, Jeffrey Gutiérrez EH, Sánchez C. HM, Marshall JM* (2022) Monitoring needs for gene drive mosquito projects: Lessons from vector control field trials and invasive species. Frontiers in Genetics 12: 780327
*Corresponding author
https://www.frontiersin.org/articles/10.3389/fgene.2021.780327


Picture
83. Marshall JM, Vásquez VN (2022) Field trials of gene drive mosquitoes: Lessons from releases of genetically sterile males and Wolbachia-infected mosquitoes. In: Tyagi BK (editor), Genetically Modified and other Innovative Vector Control Technologies, Springer, Singapore
https://link.springer.com/chapter/10.1007%2F978-981-16-2964-8_2


​2021

Picture
82. Gamez S, Chaverra-Rodriguez D, Buchman A, Kandul NP, Mendez-Sanchez SC, Bennett JB, Sánchez C. HM, Yang T, Antoshechkin I, Duque JE, Papathanos PA, Marshall JM, Akbari OS (2021) Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nature Communications 12: 7202
https://www.nature.com/articles/s41467-021-27333-1​


Picture
81. Suarez-Ramirez CD, Duran-Vega MA, Sanchez C. HM, Gonzalez-Mendoza M, Chang L, Marshall JM (2021) Deep learning architectures applied to mosquito count regressions in US datasets. In: Batyrshin I, Gelbukh A, Sidorov G (editors), Advances in Computational Intelligence: MICAI 2021, Springer, Cham
https://link.springer.com/chapter/10.1007/978-3-030-89817-5_15


Picture
80. Li M, Yang T, Bui M, Gamez S, Wise T, Kandul NP, Liu J, Alcantara L, Lee H, Edula JR, Raban R, Zhan Y, Wang Y, DeBeaubien N, Chan J, Sánchez C. HM, Bennett JB, Antoshechkin I, Montell C, Marshall JM, Akbari OS (2021) Eliminating mosquitoes with precision guided sterile males. Nature Communications 12: 5374​​https://www.nature.com/articles/s41467-021-25421-w
​Press:
Innovative Genomics Institute News: New technology designed to genetically control disease-spreading mosquitoes


Picture
79. Ha T, León TM, Lalangui K, Ponce P, Marshall JM, Cevallos V (2021) Household-level risk factors for Aedes aegypti pupal density in Guayaquil, Ecuador. Parasites & Vectors 14: 458
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-021-04913-0​


Picture
78. Legros M, Marshall JM, Macfadyen S, Hayes KR, Sheppard A, Barrett LG (2021) Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evolutionary Applications doi: https://doi.org/10.1111/eva.13285
https://onlinelibrary.wiley.com/doi/10.1111/eva.13285


Picture
77. Rerolle F, Jacobson JO, Wesson P, Dantzer E, Lover AA, Hongvanthong B, Smith J, Marshall JM, Sturrock HJW, Bennett A (2021) Population size estimation of seasonal forest-going populations in Southern Lao PDR. Nature Scientific Reports 11: 14816 https://www.nature.com/articles/s41598-021-94413-z


Picture
76. Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, Rasgon JL, Akbari OS (2021) Combating mosquito-borne diseases using genetic control technologies. Nature Communications 12: 4388
https://www.nature.com/articles/s41467-021-24654-z


Picture
75. Lanzaro GC, Sánchez C. HM, Collier TC, Marshall JM, James AA (2021) Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance alleles. BioEssays doi: https://doi.org/10.1002/bies.202000282
https://onlinelibrary.wiley.com/doi/10.1002/bies.202000282


Picture
74. Buchman A, Shriner I, Yang T, Liu J, Antoshechkin I, Marshall JM, Perry MW, AkbariOS (2021) Engineered reproductively isolated species drive reversible population replacement. Nature Communications 12: 3281
​www.nature.com/articles/s41467-021-23531-z
​Press:
UCSD News: Synthetic SPECIES developed for use as a confinable gene drive


Picture
73. Wu S*, Bennett JB, Sánchez C. HM, Dolgert AJ, León TM, Marshall JM* (2021) MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics. PLoS Computational Biology 17: e1009030
*Co-corresponding authors
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009030​


Picture
72. Fraser KJ, Mwandigha L, Traore S, Traore M, Doumbia S, Junnila A, Revay E, Beier J, Marshall JM, Ghani AC, Muller G (2021) Estimating the potential of Attractive Targeted Sugar Baits (ATSBs) as a new vector control tool for Plasmodium falciparum malaria. Malaria Journal 20: 151
https://malariajournal.biomedcentral.com/articles/10.1186/s12936-021-03684-4​


Picture
71. Rerolle F, Dantzer E, Lover AA, Marshall JM, Hongvanthong B, Sturrock HJW, Bennett A (2021) Spatio-temporal associations between deforestation and malaria incidence in Lao PDR. eLife 10: e56974
https://elifesciences.org/articles/56974​


Picture
70. Terradas G, Buchman AB, Bennett JB, Shriner I, Marshall JM, Akbari OS, Bier E (2021) Inherently confinable split-drive systems in Drosophila. Nature Communications 12: 1480
https://www.nature.com/articles/s41467-021-21771-7
​Press:
UCSD News: New split-drive system puts scientists in the (gene) driver seat


Picture
69. Kandul NP, Liu J, Bennett JB, Marshall JM, Akbari OS (2021) A home and rescue gene drive forces its inheritance stably persisting in populations. eLife 10: e65939
https://elifesciences.org/articles/65939​
​Press:
UCSD News: New split-drive system puts scientists in the (gene) driver seat


Picture
68. Ma M, Wu SL, He Z, Yuan L, Bai Z, Jiang L, Marshall JM, Lu J, Yang Z, Jing QL (2021) New genotype invasion of dengue virus serotype 1 drove massive outbreak in Guangzhou, China. Parasites & Vectors 14: 126 
https://link.springer.com/article/10.1186/s13071-021-04631-7


​2020

Picture
67. Kormos A, Lanzaro GC, Bier E, Dimopoulos G, Marshall JM, Pinto J, dos Santos AA, Bacar A, Sacramento Rompão HSP, James AA (2020) Application of the relationship-based model to engagement for field trials of genetically engineered malaria vectors. American Journal of Tropical Medicine and Hygiene doi: https://doi.org/10.4269/ajtmh.20-0868
http://www.ajtmh.org/content/journals/10.4269/ajtmh.20-0868


Picture
66. Long KC, Alphey L, Annas GJ, Bloss CS, Campbell KJ, Champer J, Chen CH, Choudhary A, Church GM, Collins JP, Cooper KL, Delborne JA, Edwards OR, Emerson CI, Esvelt K, Evans SW, Friedman RM, Gantz VM, Gould F, Hartley S, Heitman E, Hemingway J, Kanuka H, Kuzma J, Lavery JV, Lee Y, Lorenzen M, Lunshof JE, Marshall JM, Messer PW, Montell C, Oye KA, Palmer MJ, Papathanos PA, Paradkar PN, Piaggio AJ, Rasgon JL, Rašić G, Rudenko L, Saah JR, Scott MJ, Sutton JT, Vorsino AE, Akbari OS (2020) Core commitments for field trials of gene drive organisms. Science 370: 1417-1419
https://science.sciencemag.org/content/370/6523/1417
​
Press:
UCSD News: Scientists set a path for field trials of gene drive organisms


Picture
65. Adolfi A, Gantz VM, Jasinskiene N, Lee HF, Hwang K, Bulger EA, Ramaiah A, Bennett JB, Terradas G, Emerson JJ, Marshall JM, Bier E, James AA (2020) Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nature Communications 11: 5553
https://www.nature.com/articles/s41467-020-19426-0
Press:
UCI News: UC researchers pioneer more effective method of blocking malaria transmission in mosquitoes


Picture
64. Xu XS, Bulger EA, Gantz VM, Klanseck C, Heimler SR, Auradkar A, Bennett JB, Miller LA, Leahy S, Juste SS, Buchman A, Akbari OS, Marshall JM, Bier E (2020) Active genetic neutralizing elements for halting or deleting gene drives. Molecular Cell 80: 246-262
http://jmarshall.berkeley.edu/Xu2020MolecularCell.pdf
Press:
UCSD News: Biologists create new genetic systems to neutralize gene drives


Picture
63. Cheung C, Gamez S, Carballar-Lejarazú R, Ferman V, Vásquez VN, Terradas G, Ishikawa J, Schairer CE, Bier E, Marshall JM, James AA, Akbari OS, Bloss CS (2020) Translating gene drive science to promote linguistic diversity in community and stakeholder engagement. Global Public Health doi: https://doi.org/10.1080/17441692.2020.1779328
https://www.tandfonline.com/doi/full/10.1080/17441692.2020.1779328


Picture
62. Sánchez C. HM, Bennett JB, Wu SL, Rašić G, Akbari OS, Marshall JM* (2020) Confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC Biology 18: 50
*Corresponding author

https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-0759-9


Picture
61. Wu SL, Sánchez C. HM, Henry JM, Citron DT, Zhang Q, Compton KE, Liang B, Verma A, Cummings DAT, Le Menach A, Scott TW, Wilson AL, Lindsay SW, Moyes CL, Hancock PA, Russell TL, Burkot TR, Marshall JM, Kiware S, Reiner RC, Smith DL (2020) Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Computational Biology 16: e1007446
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007446


Picture
60. James SL, Marshall JM, Christophides GK, Okumu FO, Nolan T (2020) Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing. Vector-Borne and Zoonotic Diseases doi: https://doi.org/10.1089/vbz.2019.2606
https://www.liebertpub.com/doi/full/10.1089/vbz.2019.2606


Picture
59. Friedman RM, Marshall JM, Akbari OS (2020) Gene drives: New and improved. Issues in Science and Technology 36: 72-78
https://issues.org/gene-drives/


Picture
58. Raban RR, Marshall JM, Akbari OS (2020) Progress toward engineering gene drives for population control. Journal of Experimental Biology 223: jeb208181
https://journals.biologists.com/jeb/article/223/Suppl_1/jeb208181/224576/Progress-towards-engineering-gene-drives-for


Picture
57. Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, Bennett JB, Sánchez C. HM, Lanzaro GC, Schmidt H, Lee Y, Marshall JM, Akbari OS (2020) Development of a confinable gene-drive system in the human disease vector, Aedes aegypti. eLife 9: e51701
https://elifesciences.org/articles/51701


Picture
56. López VD, Bishop AL, Sánchez C. HM, Bennett JB, Feng X, Marshall JM, Bier E, Gantz VM (2020) A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nature Communications 11: 352
https://www.nature.com/articles/s41467-019-13977-7


​2019

Picture
55. Pham TB, Phong CH, Bennett JB, Hwang K, Jasinskiene N, Parker K, Stillinger D, Marshall JM, Carballar-Lejarazú R, James AA (2019) Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genetics 15: e1008440
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008440


Picture
54. Zhang Z, Jing Q, Chen Z, Li T, Jiang L, Li Y, Luo L, Marshall JM, Yang Z (2019) The increasing menace of dengue in Guangzhou, 2001–2016: The most important epicenter in mainland China. BMC Infectious Diseases 19: 1002
https://link.springer.com/article/10.1186/s12879-019-4504-3


Picture
53. Marshall JM, Raban RR, Kandul NP, Edula JR, León TM, Akbari OS (2019) Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies. Frontiers in Genetics 10: 1072
https://www.frontiersin.org/articles/10.3389/fgene.2019.01072/full


Picture
52. Sánchez C. HM*, Wu SL, Bennett JB, Marshall JM* (2019) MGDrivE: A modular simulation framework for the spread of gene drives through spatially-explicit mosquito populations. Methods in Ecology and Evolution doi: https://doi.org/10.1111/2041-210X.13318
*Co-corresponding authors

https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.13318


Picture
51. Kandul NP, Liu J, Sánchez C. HM, Wu SL, Marshall JM, Akbari OS (2019) Reply to 'Concerns about the feasibility of using "precision guided sterile males" to control insects'. Nature Communications 10: 3955
https://www.nature.com/articles/s41467-019-11617-8


Picture
50. Lee Y, Schmidt H, Collier TC, Conner WR, Hanemaaijer MJ, Slatkin M, Marshall JM, Chiu JC, Smartt CT, Lanzaro GC, Mulligan FS, Cornel AJ (2019) Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics 20: 204
https://link.springer.com/article/10.1186%2Fs12864-019-5586-4


Picture
49. Kandul NP, Liu J, Sánchez C. HM, Wu SL, Marshall JM, Akbari OS (2019) Transforming insect population control with precision guided sterile males. Nature Communications 10: 84
https://www.nature.com/articles/s41467-018-07964-7
Press:
UCSD News: New CRISPR-based technology developed to control pests with precision-guided genetics

GEN: Gene drive alternative could lead pesky insects to dead ends​


2018

Picture
48. Arakala A, Hoover CM, Marshall JM, Sokolow SH, De Leo GA, Rohr JR, Remais JV, Gambhir M (2018) Empirical estimation of the effective reproduction number of schistosomiasis: Methods and implications for macroparasitic disease elimination feasibility. PLoS Neglected Tropical Diseases 12: e0006794
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006794


Picture
47. KaramiNejadRanjbar M, Eckermann KN, Ahmed HMM, Sánchez C. HM, Dippel S, Marshall JM, Wimmer EA (2018) Consequences of resistance evolution in a Cas9-based sex-conversion suppression gene drive for insect pest management. Proceedings of the National Academy of Sciences USA doi: https://doi.org/10.1073/pnas.1713825115
http://jmarshall.berkeley.edu/KaramiNejadRanjbar2018PNAS.pdf


Picture
46. Marshall JM, Wu SL, Sánchez C. HM, Kiware SS, Ndhlovu M, Ouédraogo AL, Touré MB, Sturrock HJ, Ghani AC, Ferguson NM (2018) Mathematical models of human mobility of relevance to malaria transmission in Africa. Nature Scientific Reports 8: 7713
https://www.nature.com/articles/s41598-018-26023-1


Picture
45. Jing QL, Cheng Q, Marshall JM, Hu WB, Yang ZC, Lu JH (2018) Imported cases and minimum temperature drive dengue transmission in Guangzhou, China: Evidence from an ARIMAX model. Epidemiology & Infection doi: https://doi.org/10.1017/S0950268818001176


Picture
44. Buchman A, Marshall JM, Ostrovski D, Yang T, Akbari OS (2018) Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proceedings of the National Academy of Sciences USA doi: https://doi.org/10.1073/pnas.1713139115
http://www.pnas.org/content/early/2018/04/16/1713139115/
​
Press:
UCSD News: Researchers develop first gene drive targeting worldwide crop pest


Picture
43. Buchman A, Ivy T, Marshall JM, Akbari OS, Hay BA (2018) Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in Drosophila. ACS Synthetic Biology doi: 10.1021/acssynbio.7b00451
​http://jmarshall.berkeley.edu/Buchman2018ACSSyntheticBiology.pdf


Picture
42. Marshall JM*, Akbari OS* (2018) Can CRISPR-based gene drive be confined in the wild? A question for molecular and population biology. ACS Chemical Biology 13: 424-430
*Co-corresponding authors

http://jmarshall.berkeley.edu/Marshall2018ACSChemicalBiology.pdf


Picture
41. Benedict MQ, Burt A, Capurro ML, De Barro P, Handler AM, Hayes KR, Marshall JM, Tabachnick WJ, Adelman ZN (2018) Recommendations for laboratory containment and management of gene drive systems in arthropods. Vector-Borne and Zoonotic Diseases 18: 2-13
http://online.liebertpub.com/doi/full/10.1089/vbz.2017.2121


2017

Picture
40. Kiware SS, Chitnis N, Tatarsky A, Wu SL, Sánchez C. HM, Gosling R, Smith DL, Marshall JM (2017) Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM) for malaria elimination. PLoS ONE 12: e0187680
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187680


Picture
39. Adelman Z, Akbari OS, Bauer J, Bier E, Bloss C, Carter SR, Callender C, Costero-Saint Denis A, Cowhey P, Dass B, Delborne J, Devereaux M, Ellsworth P, Friedman RM, Gantz V, Hay BA, Hoddle M, James AA, James S, Jorgenson L, Kalichman M, Marshall JM, McGinnis W, Newman J, Pearson A, Quemada H, Rudenko L, Shelton A, Vinetz JM, Weisman J, Wong B, Wozniak C (2017) Rules of the road for insect gene drive research and testing. Nature Biotechnology 35: 716-718
http://jmarshall.berkeley.edu/Adelman2017NatureBiotech.pdf


Picture
38. Marshall JM*, Buchman A, Sánchez C. HM, Akbari OS* (2017) Overcoming evolved resistance to population-suppressing homing-based gene drives. Nature Scientific Reports 7: 3776
*Co-corresponding authors

https://www.nature.com/articles/s41598-017-02744-7
​Press:
Berkeley News: New gene-editing technique could drive out mosquito-borne disease
Daily Californian: Campus researchers discover potential to reduce mosquito-borne diseases through CRISPR technology​
​The Scientist: Researchers propose solution to gene drive technology problem


Picture
37. Zhu L, Muller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, Schlein Y, Traore SF, Doumbia S, Beier JC (2017) Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malaria Journal 16: 266
​
https://malariajournal.biomedcentral.com/articles/10.1186/s12936-017-1920-y


Picture
36. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P (2017) The interplay of climate, intervention and imported cases as determinants of the 2014 dengue outbreak in Guangzhou. PLoS NTDs 11: e0005701
http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005701


Picture
35. Killeen GF, Marshall JM, Kiware SS, Andy S, Chaki PP, Govella NJ (2017) Measuring, manipulating and exploiting behaviors of adult mosquitoes to optimize malaria vector control impact. BMJ Global Health 2: e000212
http://gh.bmj.com/content/2/2/e000212



Picture
34. Killeen GF, Tatarsky A, Diabate A, Chaccour CJ, Marshall JM, Okumu FO, Brunner S, Newby G, Williams YA, Malone D, Tusting LS, Gosling RD (2017) Developing an expanded vector control toolbox for malaria elimination. BMJ Global Health 2: e000211
http://gh.bmj.com/content/2/2/e000211


Picture
33. Killeen GF, Kiware SS, Okumu FO, Sinka ME, Moyes CL, Massey NC, Gething PW, Marshall JM, Chaccour CJ, Tusting LS (2017) Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Global Health 2: e000198
http://gh.bmj.com/content/2/2/e000198




2016

Picture
32. Marshall JM, Bennett A, Kiware SS, Sturrock HJW (2016) The hitchhiking parasite: Why human movement matters to malaria transmission and what we can do about it. Trends in Parasitology 32: 752-755
​
http://jmarshall.berkeley.edu/Marshall2016TrendsParasitol.pdf


Picture
31. Marshall JM, Touré MB, Ouédraogo AL, Ndhlovu M, Kiware SS, Rezai A, Nkhama E, Griffin JT, Hollingsworth DT, Doumbia S, Govella NJ, Ferguson NM, Ghani AC (2016) Key traveller groups of relevance to spatial malaria transmission: A survey of movement patterns in four sub-Saharan African countries. Malaria Journal 15: 200
https://malariajournal.biomedcentral.com/articles/10.1186/s12936-016-1252-3


Picture
30. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P (2016) Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: Evidence from a mathematical model. PLoS NTDs 10: e0004417
http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004417


2015

Picture
29. Marshall JM, Akbari OS (2015) Gene drive strategies for population replacement. In: Adelman ZN (editor), Genetic Control of Dengue and Malaria, Elselvier/Academic Press, New York
http://jmarshall.berkeley.edu/Chapter9GeneticControlOfDengueAndMalaria.pdf


Picture
28. Zhu L, Marshall JM, Qualls WA, Schlein Y, McManus JW, Arheart KL, Hlaing WM, Traore SF, Doumbia S, Müller GC, Beier JC (2015) Modeling optimum use of attractive toxic sugar bait stations for effective malaria vector control in Africa. Malaria Journal 14: 492
https://malariajournal.biomedcentral.com/articles/10.1186/s12936-015-1012-9


Picture
27. Zhu L, Qualls WA, Marshall JM, Arheart KL, DeAngelis DL, McManus JW, Traore SF, Doumbia S, Schlein Y, Müller GC, Beier JC (2015) A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission. Malaria Journal 14: 59
https://malariajournal.biomedcentral.com/articles/10.1186/s12936-015-0555-0


Picture
26. Marshall JM (2015) Measuring public attitudes to releases of transgenic mosquitoes for disease control. In: Tyagi BK (editor), WHO/TDR Training Manual: Biosafety for Human Health and the Environment in the Context of the Potential Use of Genetically Modified Mosquitoes, WHO Press, Geneva
http://jmarshall.berkeley.edu/Chapter11WHOTrainingManualGMMs.pdf


Picture
25. Marshall JM (2015) The Cartagena Protocol and releases of transgenic mosquitoes. In: Tyagi BK (editor), WHO/TDR Training Manual: Biosafety for Human Health and the Environment in the Context of the Potential Use of Genetically Modified Mosquitoes, WHO Press, Geneva
http://jmarshall.berkeley.edu/Chapter9WHOTrainingManualGMMs.pdf


2014

Picture
24. Marshall JM, Hay BA (2014) Medusa: A novel gene drive system for confined suppression of mosquito populations. PLoS ONE 9: e102694
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102694
Press:
​IGTRCN: Medusa: Harnessing a sex-linked transgenic drive system to control insect populations


Picture
23. Okorie PN, Marshall JM, Akpa MO, George AO (2014) Perceptions and recommendations by scientists for a potential release of genetically modified mosquitoes in Nigeria. Malaria Journal 13: 154
https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-13-154
Press:
SciDev.Net: Nigerian scientists wary of anti-malarial GM mosquitoes


Picture
22. White MT, Lwetoijera D, Marshall JM, Caron-Lormier G, Bohan DA, Denholm I, Devine GJ (2014) Negative cross resistance mediated by co-treated bed nets: A potential means of restoring pyrethroid-susceptibility to malaria vectors. PLoS ONE 9: e95640
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0095640


2013

Picture
21. Marshall JM, White MT, Ghani AC, Schlein Y, Muller GC, Beier JC (2013) Quantifying the mosquito’s sweet tooth: Modeling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malaria Journal 12: 291
https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-12-291


Picture
20. Akbari OS*, Matzen KD*, Marshall JM*, Huang H, Ward CM, Hay BA (2013) A synthetic gene drive system for local, reversible modification and suppression of insect populations. Current Biology 23: 671-677
*Equal contribution
http://www.cell.com/current-biology/fulltext/S0960-9822(13)00266-2
Press:
Current Biology: Insect biotechnology: Controllable replacement of disease vectors


Picture
19. Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HCJ, Gould F, Hastings I, Marshall JM, Ranson H, Rowland M, Shaman J, Lindsay SW (2013) The importance of mosquito behavioral adaptations to malaria control in Africa. Evolution 67: 1218-1230
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655544/


2012

Picture
18. Marshall JM, Hay BA (2012) Confinement of gene drive systems to local populations: A comparative analysis. Journal of Theoretical Biology 294: 153-171
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260013/


Picture
17. Marshall JM, Hay BA (2012) General principles of single-construct chromosomal gene drive. Evolution 66: 2150-2166
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389707/


Picture
16. De Silva P, Marshall JM (2012) Factors contributing to urban malaria transmission in sub-Saharan Africa: A systematic review. Journal of Tropical Medicine 2012: 819563
https://www.hindawi.com/journals/jtm/2012/819563/


Picture
15. Akbari OS*, Chen CH*, Marshall JM*, Huang H, Antoshechkin I, Hay BA (2012) Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; A theoretical exploration of Medea-dependent population suppression. ACS Synthetic Biology 3: 915-928
*Equal contribution
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742681/


2011

Picture
14. Marshall JM, Pittman GW, Buchman A, Hay BA (2011) Semele: A killer-male, rescue-female system for suppression and replacement of insect disease vector populations. Genetics 187: 535-551
​
http://www.genetics.org/content/187/2/535
Press:
Deutsche Welle: New model may revolutionize mosquito-borne disease control
Science Daily: Pesticide-free method takes a bite out of mosquito-borne disease


Picture
13. Marshall JM, Hay BA (2011) Inverse Medea as a novel gene drive system for local population replacement: A theoretical analysis. Journal of Heredity 102: 336-341
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076586/


Picture
12. Marshall JM (2011) The toxin and antidote puzzle: New ways to control insect pest populations through manipulating inheritance. Bioengineered Bugs 2: 1-6
​
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225740/


Picture
11. Marshall JM (2011) The Cartagena Protocol in the context of recent releases of transgenic and Wolbachia-infected mosquitoes. Asia-Pacific Journal of Molecular Biology & Biotechnology 19: 93-100
http://jmarshall.berkeley.edu/MarshallAPJMBB2011.pdf


2010

Picture
10. Marshall JM (2010) The Cartagena Protocol and genetically modified mosquitoes. Nature Biotechnology 28: 896-897
http://jmarshall.berkeley.edu/Marshall2010NatureBiotech.pdf
Press:
SciDev.Net: Biosafety meeting “must address GM insects”


Picture
9. Marshall JM, Touré MB, Traore MM, Famenini S, Taylor CE (2010) Perspectives of people in Mali toward genetically modified mosquitoes for malaria control. Malaria Journal 9: 128
https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-9-128


Picture
8. Marshall JM, Touré MB, Traore MM, Taylor CE (2010) Towards a quantitative assessment of public attitudes to transgenic mosquitoes: Questions based on a qualitative survey in Mali. Asia-Pacific Journal of Molecular Biology & Biotechnology 18: 251-273
http://jmarshall.berkeley.edu/MarshallAPJMBB2010.pdf



2009

Picture
7. Marshall JM, Taylor CE (2009) Malaria control with transgenic mosquitoes. PLoS Medicine 6: e1000020
http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000020


Picture
6. Marshall JM (2009) The effect of gene drive on containment of transgenic mosquitoes. Journal of Theoretical Biology 258: 250-265
http://jmarshall.berkeley.edu/Marshall2009JTheorBiol.pdf


2008

Picture
5. Marshall JM (2008) A branching process model for the early spread of a transposable element in a diploid population. Journal of Mathematical Biology 57: 811-840
http://jmarshall.berkeley.edu/Marshall2008JMathBiol.pdf


Picture
4. Marshall JM (2008) The impact of dissociation on transposon-mediated disease control strategies. Genetics 178: 1673-1682
http://www.genetics.org/content/178/3/1673.long


2007

Picture
3. Marshall JM, Morikawa K, Manoukis N, Taylor CE (2007) Predicting the effectiveness of population replacement strategy using mathematical modeling. Journal of Visualized Experiments 5: 227
https://www.jove.com/video/227/predicting-effectiveness-population-replacement-strategy-using


2006

Picture
2. Marshall JM, Weiss R (2006) A Bayesian heterogeneous analysis of variance approach to inferring recent selective sweeps. Genetics 173: 2357-2370
http://www.genetics.org/content/173/4/2357.long


2004

Picture
1. Wills P, Marshall JM, Smith P (2004) Genetic information and self-organised criticality. Europhysics Letters 68: 901-907
http://jmarshall.berkeley.edu/Wills2004Europhysics.pdf

Copyright © www.MarshallLab.com 2023
Picture
  • Home
  • Publications
  • Courses
  • People
  • Diversity
  • Join the Lab