106. Apte RA, Smidler AL, Pai JJ, Chow ML, Chen S, Mondal A, Sánchez C. HM, Antoshechkin I, Marshall JM, Akbari OS (2024) Eliminating malaria vectors with precision guided sterile males. Proceedings of the National Academies of Sciences USA 121: e2312456121 https://www.pnas.org/doi/10.1073/pnas.2312456121
105. Mondal A*, Sánchez C. HM, Marshall JM* (2024) MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance. *Co-corresponding authors PLoS Computational Biology 20: e1012133 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012133
103. Li M, Kandul N, Sun R, Yang T, Benetta ED, Brogan D, Antoshechkin I, Sánchez C. HM, Zhan YP, DeBeaubien N, Loh Y, Su M, Montell C, Marshall JM, Akbari OS (2024) Targeting sex determination to suppress mosquito populations. eLife 12: RP90199 https://elifesciences.org/articles/90199
2023
102. Kormos A, Dimopoulos G, Bier E, Lanzaro GC, Marshall JM, James AA (2023) Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops. Frontiers in Bioengineering & Biotechnology 11: 1261123 https://www.frontiersin.org/articles/10.3389/fbioe.2023.1261123
98. Li HH, Su MP, Wu SC, Tsou HH, Chang MC, Cheng YC, Tsai KN, Wang HW, Chen GH, Tang CK, Chung PJ, Tsai WT, Huang LR, Yueh YA, Chen HW, Pan CY, Akbari OS, Chang HH, Yu GY, Marshall JM, Chen CH (2023) Mechanical transmission of dengue virus by Aedes aegypti may influence disease transmission dynamics during outbreaks. eBioMedicine 94: 104723 https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(23)00288-8/
97. Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM, Mondal A, Sánchez C. HM, Lee HF, Marshall JM, Dimopoulos G, James AA (2023) Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii. Proceedings of the National Academy of Sciences USA 120: e2221118120 https://www.pnas.org/doi/10.1073/pnas.2221118120
84. Rašić G, Lobo NF, Jeffrey Gutiérrez EH, Sánchez C. HM, Marshall JM* (2022) Monitoring needs for gene drive mosquito projects: Lessons from vector control field trials and invasive species. Frontiers in Genetics 12: 780327 *Corresponding author https://www.frontiersin.org/articles/10.3389/fgene.2021.780327
83. Marshall JM, Vásquez VN (2022) Field trials of gene drive mosquitoes: Lessons from releases of genetically sterile males and Wolbachia-infected mosquitoes. In: Tyagi BK (editor), Genetically Modified and other Innovative Vector Control Technologies, Springer, Singapore https://link.springer.com/chapter/10.1007%2F978-981-16-2964-8_2
2021
82. Gamez S, Chaverra-Rodriguez D, Buchman A, Kandul NP, Mendez-Sanchez SC, Bennett JB, Sánchez C. HM, Yang T, Antoshechkin I, Duque JE, Papathanos PA, Marshall JM, Akbari OS (2021) Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nature Communications 12: 7202 https://www.nature.com/articles/s41467-021-27333-1
81. Suarez-Ramirez CD, Duran-Vega MA, Sanchez C. HM, Gonzalez-Mendoza M, Chang L, Marshall JM (2021) Deep learning architectures applied to mosquito count regressions in US datasets. In: Batyrshin I, Gelbukh A, Sidorov G (editors), Advances in Computational Intelligence: MICAI 2021, Springer, Cham https://link.springer.com/chapter/10.1007/978-3-030-89817-5_15
78. Legros M, Marshall JM, Macfadyen S, Hayes KR, Sheppard A, Barrett LG (2021) Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evolutionary Applications 14: 2162-2178 https://onlinelibrary.wiley.com/doi/10.1111/eva.13285
77. Rerolle F, Jacobson JO, Wesson P, Dantzer E, Lover AA, Hongvanthong B, Smith J, Marshall JM, Sturrock HJW, Bennett A (2021) Population size estimation of seasonal forest-going populations in Southern Lao PDR. Nature Scientific Reports 11: 14816 https://www.nature.com/articles/s41598-021-94413-z
76. Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, Rasgon JL, Akbari OS (2021) Combating mosquito-borne diseases using genetic control technologies. Nature Communications 12: 4388 https://www.nature.com/articles/s41467-021-24654-z
75. Lanzaro GC, Sánchez C. HM, Collier TC, Marshall JM, James AA (2021) Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance alleles. BioEssays 43: e2000282 https://onlinelibrary.wiley.com/doi/10.1002/bies.202000282
73. Wu S*, Bennett JB, Sánchez C. HM, Dolgert AJ, León TM, Marshall JM*(2021) MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics. PLoS Computational Biology 17: e1009030 *Co-corresponding authors https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009030
72. Fraser KJ, Mwandigha L, Traore S, Traore M, Doumbia S, Junnila A, Revay E, Beier J, Marshall JM, Ghani AC, Muller G (2021) Estimating the potential of Attractive Targeted Sugar Baits (ATSBs) as a new vector control tool for Plasmodium falciparum malaria. Malaria Journal 20: 151 https://malariajournal.biomedcentral.com/articles/10.1186/s12936-021-03684-4
71. Rerolle F, Dantzer E, Lover AA, Marshall JM, Hongvanthong B, Sturrock HJW, Bennett A (2021) Spatio-temporal associations between deforestation and malaria incidence in Lao PDR. eLife 10: e56974 https://elifesciences.org/articles/56974
68. Ma M, Wu SL, He Z, Yuan L, Bai Z, Jiang L, Marshall JM, Lu J, Yang Z, Jing QL (2021) New genotype invasion of dengue virus serotype 1 drove massive outbreak in Guangzhou, China. Parasites & Vectors 14: 126 https://link.springer.com/article/10.1186/s13071-021-04631-7
2020
67. Kormos A, Lanzaro GC, Bier E, Dimopoulos G, Marshall JM, Pinto J, dos Santos AA, Bacar A, Sacramento Rompão HSP, James AA (2020) Application of the relationship-based model to engagement for field trials of genetically engineered malaria vectors. American Journal of Tropical Medicine and Hygiene 104: 805-811 http://www.ajtmh.org/content/journals/10.4269/ajtmh.20-0868
66. Long KC, Alphey L, Annas GJ, Bloss CS, Campbell KJ, Champer J, Chen CH, Choudhary A, Church GM, Collins JP, Cooper KL, Delborne JA, Edwards OR, Emerson CI, Esvelt K, Evans SW, Friedman RM, Gantz VM, Gould F, Hartley S, Heitman E, Hemingway J, Kanuka H, Kuzma J, Lavery JV, Lee Y, Lorenzen M, Lunshof JE, Marshall JM, Messer PW, Montell C, Oye KA, Palmer MJ, Papathanos PA, Paradkar PN, Piaggio AJ, Rasgon JL, Rašić G, Rudenko L, Saah JR, Scott MJ, Sutton JT, Vorsino AE, Akbari OS (2020) Core commitments for field trials of gene drive organisms. Science 370: 1417-1419 https://science.sciencemag.org/content/370/6523/1417 Press: UCSD News:Scientists set a path for field trials of gene drive organisms
63. Cheung C, Gamez S, Carballar-Lejarazú R, Ferman V, Vásquez VN, Terradas G, Ishikawa J, Schairer CE, Bier E, Marshall JM, James AA, Akbari OS, Bloss CS (2020) Translating gene drive science to promote linguistic diversity in community and stakeholder engagement. Global Public Health 15(10):1551-1565 https://www.tandfonline.com/doi/full/10.1080/17441692.2020.1779328
62. Sánchez C. HM, Bennett JB, Wu SL, Rašić G, Akbari OS, Marshall JM* (2020) Confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC Biology 18: 50 *Corresponding author https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-0759-9
61. Wu SL, Sánchez C. HM, Henry JM, Citron DT, Zhang Q, Compton KE, Liang B, Verma A, Cummings DAT, Le Menach A, Scott TW, Wilson AL, Lindsay SW, Moyes CL, Hancock PA, Russell TL, Burkot TR, Marshall JM, Kiware S, Reiner RC, Smith DL (2020) Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Computational Biology 16: e1007446 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007446
60. James SL, Marshall JM, Christophides GK, Okumu FO, Nolan T (2020) Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing. Vector-Borne and Zoonotic Diseases 20: 237–251 https://www.liebertpub.com/doi/full/10.1089/vbz.2019.2606
59. Friedman RM, Marshall JM, Akbari OS (2020) Gene drives: New and improved. Issues in Science and Technology 36: 72-78 https://issues.org/gene-drives/
57. Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, Bennett JB, Sánchez C. HM, Lanzaro GC, Schmidt H, Lee Y, Marshall JM, Akbari OS (2020) Development of a confinable gene-drive system in the human disease vector, Aedes aegypti. eLife 9: e51701 https://elifesciences.org/articles/51701
56. López VD, Bishop AL, Sánchez C. HM, Bennett JB, Feng X, Marshall JM, Bier E, Gantz VM (2020) A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nature Communications 11: 352 https://www.nature.com/articles/s41467-019-13977-7
55. Sánchez C. HM*, Wu SL, Bennett JB, Marshall JM* (2020) MGDrivE: A modular simulation framework for the spread of gene drives through spatially-explicit mosquito populations. Methods in Ecology and Evolution 11: 229-239 *Co-corresponding authors https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13318
2019
54. Pham TB, Phong CH, Bennett JB, Hwang K, Jasinskiene N, Parker K, Stillinger D, Marshall JM, Carballar-Lejarazú R, James AA (2019) Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genetics 15: e1008440 https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008440
53. Zhang Z, Jing Q, Chen Z, Li T, Jiang L, Li Y, Luo L, Marshall JM, Yang Z (2019) The increasing menace of dengue in Guangzhou, 2001–2016: The most important epicenter in mainland China. BMC Infectious Diseases 19: 1002 https://link.springer.com/article/10.1186/s12879-019-4504-3
52. Marshall JM, Raban RR, Kandul NP, Edula JR, León TM, Akbari OS (2019) Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies. Frontiers in Genetics 10: 1072 https://www.frontiersin.org/articles/10.3389/fgene.2019.01072/full
51. Kandul NP, Liu J, Sánchez C. HM, Wu SL, Marshall JM, Akbari OS (2019) Reply to 'Concerns about the feasibility of using "precision guided sterile males" to control insects'. Nature Communications 10: 3955 https://www.nature.com/articles/s41467-019-11617-8
50. Lee Y, Schmidt H, Collier TC, Conner WR, Hanemaaijer MJ, Slatkin M, Marshall JM, Chiu JC, Smartt CT, Lanzaro GC, Mulligan FS, Cornel AJ (2019) Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics 20: 204 https://link.springer.com/article/10.1186%2Fs12864-019-5586-4
48. Arakala A, Hoover CM, Marshall JM, Sokolow SH, De Leo GA, Rohr JR, Remais JV, Gambhir M (2018) Empirical estimation of the effective reproduction number of schistosomiasis: Methods and implications for macroparasitic disease elimination feasibility. PLoS Neglected Tropical Diseases 12: e0006794 https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006794
47. Carami EM, Eckermann KN, Ahmed HMM, Sánchez C. HM, Dippel S, Marshall JM, Wimmer EA (2018) Consequences of resistance evolution in a Cas9-based sex-conversion suppression gene drive for insect pest management. Proceedings of the National Academy of Sciences USA 115: 6189-6194 https://www.pnas.org/doi/full/10.1073/pnas.1713825115
46. Marshall JM, Wu SL, Sánchez C. HM, Kiware SS, Ndhlovu M, Ouédraogo AL, Touré MB, Sturrock HJ, Ghani AC, Ferguson NM (2018) Mathematical models of human mobility of relevance to malaria transmission in Africa. Nature Scientific Reports 8: 7713 https://www.nature.com/articles/s41598-018-26023-1
43. Buchman A, Ivy T, Marshall JM, Akbari OS, Hay BA (2018) Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in Drosophila. ACS Synthetic Biology 7: 1359-1370 https://pubs.acs.org/doi/10.1021/acssynbio.7b00451
42. Marshall JM*, Akbari OS* (2018) Can CRISPR-based gene drive be confined in the wild? A question for molecular and population biology. ACS Chemical Biology 13: 424-430 *Co-corresponding authors https://pubs.acs.org/doi/10.1021/acschembio.7b00923
41. Benedict MQ, Burt A, Capurro ML, De Barro P, Handler AM, Hayes KR, Marshall JM, Tabachnick WJ, Adelman ZN (2018) Recommendations for laboratory containment and management of gene drive systems in arthropods. Vector-Borne and Zoonotic Diseases 18: 2-13 http://online.liebertpub.com/doi/full/10.1089/vbz.2017.2121
2017
40. Kiware SS, Chitnis N, Tatarsky A, Wu SL, Sánchez C. HM, Gosling R, Smith DL, Marshall JM (2017) Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM) for malaria elimination. PLoS ONE 12: e0187680 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187680
39. Adelman Z, Akbari OS, Bauer J, Bier E, Bloss C, Carter SR, Callender C, Costero-Saint Denis A, Cowhey P, Dass B, Delborne J, Devereaux M, Ellsworth P, Friedman RM, Gantz V, Hay BA, Hoddle M, James AA, James S, Jorgenson L, Kalichman M, Marshall JM, McGinnis W, Newman J, Pearson A, Quemada H, Rudenko L, Shelton A, Vinetz JM, Weisman J, Wong B, Wozniak C (2017) Rules of the road for insect gene drive research and testing. Nature Biotechnology 35: 716-718 https://www.nature.com/articles/nbt.3926
35. Killeen GF, Marshall JM, Kiware SS, Andy S, Chaki PP, Govella NJ (2017) Measuring, manipulating and exploiting behaviors of adult mosquitoes to optimize malaria vector control impact. BMJ Global Health 2: e000212 http://gh.bmj.com/content/2/2/e000212
34. Killeen GF, Tatarsky A, Diabate A, Chaccour CJ, Marshall JM, Okumu FO, Brunner S, Newby G, Williams YA, Malone D, Tusting LS, Gosling RD (2017) Developing an expanded vector control toolbox for malaria elimination. BMJ Global Health 2: e000211 http://gh.bmj.com/content/2/2/e000211
33. Killeen GF, Kiware SS, Okumu FO, Sinka ME, Moyes CL, Massey NC, Gething PW, Marshall JM, Chaccour CJ, Tusting LS (2017) Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Global Health 2: e000198 http://gh.bmj.com/content/2/2/e000198
31. Marshall JM, Touré MB, Ouédraogo AL, Ndhlovu M, Kiware SS, Rezai A, Nkhama E, Griffin JT, Hollingsworth DT, Doumbia S, Govella NJ, Ferguson NM, Ghani AC (2016) Key traveller groups of relevance to spatial malaria transmission: A survey of movement patterns in four sub-Saharan African countries. Malaria Journal 15: 200 https://malariajournal.biomedcentral.com/articles/10.1186/s12936-016-1252-3
30. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P (2016) Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: Evidence from a mathematical model. PLoS NTDs 10: e0004417 http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004417
22. White MT, Lwetoijera D, Marshall JM, Caron-Lormier G, Bohan DA, Denholm I, Devine GJ (2014) Negative cross resistance mediated by co-treated bed nets: A potential means of restoring pyrethroid-susceptibility to malaria vectors. PLoS ONE 9: e95640 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0095640
2013
21. Marshall JM, White MT, Ghani AC, Schlein Y, Muller GC, Beier JC (2013) Quantifying the mosquito’s sweet tooth: Modeling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malaria Journal 12: 291 https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-12-291
16. De Silva P, Marshall JM (2012) Factors contributing to urban malaria transmission in sub-Saharan Africa: A systematic review. Journal of Tropical Medicine 2012: 819563 https://www.hindawi.com/journals/jtm/2012/819563/
15. Akbari OS*, Chen CH*, Marshall JM*, Huang H, Antoshechkin I, Hay BA (2012) Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; A theoretical exploration of Medea-dependent population suppression. ACS Synthetic Biology 3: 915-928 *Equal contribution https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742681/
13. Marshall JM, Hay BA (2011) Inverse Medea as a novel gene drive system for local population replacement: A theoretical analysis. Journal of Heredity 102: 336-341 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076586/
12. Marshall JM (2011) The toxin and antidote puzzle: New ways to control insect pest populations through manipulating inheritance. Bioengineered Bugs 2: 1-6 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225740/